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Theory of the vortex breakdown phenomenon 

By T. BROOKE BENJAMIN 
Department of Engineering, University of Cambridge? 

(Received 11 June 1962) 

The phenomenon examined is the abrupt structural change which can occur 
at some station along the axis of a swirling flow, notably the leading-edge vortex 
formed above a delta wing at incidence. Contrary to previous attempts at an 
explanation, the belief demonstrated herein is that vortex breakdown is not a 
manifestation of instability or of any other effect indicated by study of infinitesi- 
mal disturbances alone. It is instead a finite transition between two dynamically 
conjugate states of axisymmetric flow, analogous to the hydraulic jump in open- 
channel flow. A set of properties essential to such a transition, corresponding to 
a set shown to provide a complete explanation for the hydraulic jump, is demon- 
strated with wide generality for axisymmetric vortex flows; and the interpreta- 
tion covers both the case of mild transitions, where an undular structure is 
developed without the need arising for significant energy dissipation, and the case 
of strong ones where a region of vigorous turbulence is generated. An important 
part of the theory depends on the calculus of variations; and the comprehensive- 
ness with which certain properties of conjugate flow pairs are demonstrable by 
this analytical means suggests that present ideas may be useful in various other 
problems. 

1. Introduction 
The term ‘vortex breakdown’, or the alternative ‘vortex bursting’, is com- 

monly used to refer to the abrupt and drastic change of structure which some- 
times occurs in a swirling flow, particularly in the leading-edge vortex formed 
above a sweptback lifting surface. The first experimental observations were 
made independently at about the same time four years ago by several people 
investigating the aerodynamics of delta wings, notably by W. E. Gray, R. L. 
Maltby, N. C. Lambourne and T. Elle, and accounts have been published by 
Wed6 (1960) and Elle (1960). Frequent reference will be made presently to the 
experimental paper by Harvey (1962) which appears in this issue of the Journal 
of Fluid Mechunics; and for information on the practical problem in whose 
context wide interest in the vortex breakdown phenomenon has arisen, one may 
usefully refer to the analysis of the leading-edge vortex published recently by 
Hall (1961). 

There have already been several attempts to account for the phenomenon 
theoretically. Jones (1960) and Ludwieg (1961) proposed it to be the outcome 

t This paper was written while the author was on leave at  the Institute of Science and 
Technology, University of Michigan. 

38 Fluid Mech. 14 



594 T. Brooke Benjamin 

of instability of the original flow and they examined the stability of relevant 
flow models by means of small-disturbance theory on the usual lines. While it 
is not to be denied that instability in the sense commonly understood may be 
responsible for the disruption of many swirling flows in practice, the view to be 
emphasized in this paper is that the distinctive vortex breakdown phenomenon 
is not such a case and its essential explanation is outside the reach of conventional 
stability theory. One outstanding piece of evidence controverting the previous 
explanation is that under careful experimental conditions the phenomenon can 
be made approximately axisymmetric (Harvey 1962), while the original flow is 
of a kind that is highly stable to axisymmetric disturbances (cf. Jones 1960). The 
additional facts that the breakdown can then comprise an abrupt expansion of 
the stream surfaces near the axis, and moreover be an approximately steady 
configuration, are also incompatible with the previous explanation. 

Approaching the problem quite differently Squire (1960) suggested that break- 
down might occur when the flow can sustain infinitesimal standing waves, his 
idea being that, if suchwaves exist, disturbances whichare present far downstream 
might spread along the vortex and hence disrupt the flow nearer the start. Since 
standing waves of indefinitely great length are the first to become possible as 
the velocity of swirl is gradually increased, he proposed the limiting condition 
for the existence of such waves to be the inceptive state for a vortex breakdown. 
Experimentally the breakdown phenomenon is indeed observed to move up from 
downstream on inception. But a serious objection to Squire’s theory is that the 
group velocity of his standing waves is in fact directed downstream (see $ 3  
below), which means that the waves can only form in the rear of a disturbing 
agency and cannot spread upstream (i.e. they are like gravity waves in a hori- 
zontal water channel). However, the analytical condition for the existence of 
indefinitely long standing waves has a fundamental role in the present theory, 
even though it does not refer directly to any physical event. A hint as to the proper 
interpretation of Squire’s analysis, together with a correct conjecture about the 
real nature of vortex breakdown, has in fact already been given by Harvey 
(1960). 

The present explanation for vortex breakdown recognizes it as an example 
of a general type of fluid-dynamical mechanism which apparently has several 
other instances with practical significance,t and whose essentials can be described 
neatly and comprehensively in the language of the calculus of variations. It 
will be shown that frictionless swirling flows generally occur in conjugate pairs, 
both of which can form parts of the same overall system. For a given distribution 
of total head and circulation over the stream surfaces, one possible state of flow 
is ‘subcritical ’ in the sense that infinitesimal axisymmetric standing waves can 
occur upon it, and the conjugate state is ‘supercritical’. (The case considered by 
Squire is, of course, the ‘critical’ one separating these two domains of flow 
states.) A deduction of paramount importance in the theory is that, compared 
with their conjugates, supercritical flows possess a deficiency of total momentum, 

t For example, the application of present ideas to horizontal shear flows of hetero- 
geneous fluids will be obvious, and there appear to be possible applications to flows in 
magnetic fields. 
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or more precisely of total thrust or ‘flow-force’ defined as the integral of axial 
momentum flux plus pressure over a section through the flow. For reasons to 
be argued later, this property implies that supercritical flows are liable to under- 
go spontaneous transitions to the subcritical state; the corresponding gain of 
flow-force is either manifested as the ‘wave resistance’ of a stationary wave- 
train formed in the subcritical flow downstream from the transition, or it induces 
such a violent wave-making action that turbulence results and this dissipative 
process cancels the original dynamical relationships determining the subcritical 
conjugate. The end result of either mechanism is that the flow-force downstream 
is reduced to the upstream value, a steady state then prevailing in conformity with 
the momentum balance between sections either side of the transition. The latter 
mechanism is necessary when the original flow is far supercritical, so that the 
transition requires a drastic change of conditions and the excess flow-force 
associated with the ‘intact’ conjugate state is large; but wave formation may 
balance most of the excess without significant energy loss when the transition 
is a mild one. (Note the evidence of a periodic structure in the photographs 
presented by Harvey (1962)) which show a mild case of vortex breakdown.) 

In all these respects vortex breakdown is precisely analogous to the hydraulic 
jump in open-channel flow; and because of its capacity to illustrate the essentials 
of the explanation for vortex breakdown, the familiar hydraulic problem is 
reviewed in $ 2. While the circumstantial distinctions between undular and fully 
turbulent hydraulic jumps are well-recognized experimental facts, however, 
the proper theoretical interpretation is far from obvious and does not appear 
to be widely known, so that there is a need to discuss the matter rather carefully 
in order to secure the basic ideas which carry over intact to vortex breakdown. 

In  $ 3  some relevant aspects of the linearized theory of perturbed cylindrical 
vortices are covered, and in particular analytical criteria for supercritical and 
subcritical states of flow are derived-which later, in $4, are identified with 
conditions for the flow-force integral to be a minimum or not. This section serves 
mainly to establish a number of preliminary details needed for the main analysis 
in $4, and it may safely be skipped in a first reading of the paper-except perhaps 
for the short subsection 3.3. Where basic properties of axisymmetric swirling 
flows are concerned, the derivations of several results presented in $03 and 4 
are deferred to the Appendix at  the end of the paper. Although the displacement 
of a fairly large amount of this supporting material to the Appendix makes it 
an unusually long one, this form of presentation seemed specially desirable to 
give clarity to the essential points of the theory, which need not be regarded as 
tied exclusively to the particular context of vortex flows. 

2. The hydraulic analogy 
The simple theory of the hydraulic jump, which is due to Rayleigh (see Lamb 

1932, p. 280)) considers a steady transition between two states of uniform 
perfect-fluid flow along a horizontal open channel. Presuming conservation of 
flow rate and momentum (corrected for pressure force), it  leads to the conclusion 
that energy must be dissipated a t  the transition. The matter can be argued in a 
rather different way, however, which indeed is necessary to explain the fact that 

38-2 
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very weak hydraulic jumps comprise stationary wave-trains showing no evidence 
of significant energy loss (see Brooke Benjamin & Lighthill 1954); and this 
approach will be outlined here on account of its close affinity with our explanation 
for vortex breakdown. 

We first recall that for a given flow rate Q and total head H there are two possible 
states of uniform steady flow along a channel of rectangular section, each having 
constant depth h and horizontal velocity u. One is subcritical, whichmeans that 
its Froude number P = u/(gh)$ is less than unity, and the other is supercritical 
with P > 1. For the subcritical flow, his larger and hence u is smaller. A property 
of all subcritical flows is that infinitesimal standing waves can occur upon them, 
whereas no such wave is possible for supercritical flows. These facts are indicated 
by the well-known formula (Lamb 1932, p. 376, equation (5)) 

h 2nh 
P2 = ~ tanh- 

2nh h 
(2.1) 

for the wavelength h of stationary sinusoidal waves, which gives real values of h 
only if F < 1, with h --f 03 for P -+ l-.? As mentioned already in $1, these waves 
have a ‘relative’ group velocity (i.e. relative to phase, which is of course a t  rest 
for standing waves) which is directed downstream; consequently a wave-train 
will form in the rear of an obstacle disturbing a subcritical stream, but one cannot 
form ahead of it (cf. Lamb, $248). 

Consider next the quantity S defined as the sum of horizontal momentum 
flux and pressure force per unit span, thus being given by 8 = p(u2h + $gh2) for 
a uniform stream with density p. (As frequent reference is made to this quantity 
throughout this paper, we introduce for it the befitting term ‘ flow-force ’, already 
used in $ 1.) For any pair of conjugate flows as specified above, X is easily shown 
to be greater for the subcritical than for the supercritical one. Using suffices 1 
and 2 to refer to subcritical and supercritical respectively, one gets 

(2.2) 

which shows the excess flow-force of the subcritical conjugate to be of third-order 
smallness when the difference between the pair is small. It can also be shown that 

f We note a generalization of this result which will be seen to correspond to the out- 
come of the analysis in § 3. The wave problem providing (2.1) is concerned with infinitesi- 
mal disturbances whose dependence on the horizontal co-ordinate z is representable by 
exp(iaz), with CL =2n/h real. Consider now the more general problem of disturbances 
dependent on exp (yz), with y unrestricted. Formal solution of the same dynamical equa- 
tions and boundary conditions leads to the result 3’2 = (tanyh)/yh. This equation has 
infinitely many pairs of real roots + y  but, as already implied, just one pair of purely 
imaginary roots y = +ia if F2 < 1 and none if F2 > 1; furthermore, it has no complex 
roots (Lamb, $245). The existence of an infinite set of positive real eigenvalues 7 2 ,  with a 
limited number of negative ones only under subcritical conditions, is a universal feature 
of the general class of systems to which the main ideas of this paper will apply. Incidentally, 
a significance of the least real value yz  is that the respective exponential functions of z 
will describe the outlying parts of any disturbance in a supercritical stream: for instance, 
the outskirts of a solitary wave or the converging stream issuing from under a sluice-gate 
(Brooke Benjamin 1956). A corresponding interpretation for swirling flows will be noted 
in§3. 
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S is reduced when a train of standing waves is formed on a subcritical flow, this 
reduction being equivalent to the ‘wave resistance’ as usually defined, and S 
decreases steadily with increasing wave amplitude up into the realm of ‘waves 
of finite size’ and ultimately to breaking waves (cf. Brooke Benjamin & Light- 
hill 1954). Thus, for example, we have an explanation for each of the situations 
illustrated in figure 1. Here an obstacle spanning a subcritical stream exerts a 
horizontal force against it  which must be balanced by a reduction in flow-force 
downstream. In figure 1 (a )  the reduction is shown to occur by the formation of 
waves, and in figure 1 ( b )  a larger reduction is shown to be brought about by a 
transition to the conjugate supercritical state. 

(b )  

FIGURE 1. Physical illustrations of (a) wave resistance and 
( b )  flow-force deficiency of supercritical flow. 

For an originally supercritical flow, on the other hand, a transition to the 
conjugate subcritical state would result in an increase of flow-force; that is, an 
external force acting in the downstream direction would be necessary to push 
back against the rise in water level so as to restore the flow-force balance essential 
to a steady state. This imagined release of flow-force accounts vividly for the 
tendency of supercritical streams t o  form hydraulic jumps, and it is perhaps more 
appealing intuitively than Rayleigh’s theoretical model for the final steady state 
of a jump. If a transition arises in the absence of external forces and at first 
there is no energy loss, the unbalance of flow-force implies, of course, that the 
situation cannot be steady. In  fact, for a mild transition with the upstream 
Froude number not much greater than unity, waves develop one by one behind 
the transition so that eventually a steady wave-train is established on the sub- 
critical flow, the reduction in S by wave resistance being enough to make up the 
momentum balance between the two flows without much energy being lost (see 
figure 2(a)) . t  For strong transition, however, the large excess of flow-force 

t It was shown by Brooke Benjamin & Lighthill (1954) that some energy loss is in fact 
essential, since the only wave possible when Q, H and S are all conserved is the solitary 
wave; however, an exceedingly small reduction in H is enough to give the right conditions 
for a steady ‘cnoidal’ wave-train such as is observed behind a very weak hydraulic jump, 
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causes a violently unsteady motion leading to ‘breaking’ of the water surface 
(i.e. this is nature’s unsuccessful attempt in the direction of cancelling the excess 
by wave formation, the initial wave being swelled to breaking still without 
making an adequate flow-force reduction); thus the flow becomes very turbulent 
a t  the transition, and the large energy loss thereby occurring nullifies the con- 
ditions of the present theory. To account for the final steady state in this case, 
one must adopt the alternative hypothesis that only Q and X are conserved, 

FIGURE 2 .  Illustration of two types of hydraulic jump: (a) undular, and 
( b )  dissipative with uniform flow downstream. 

allowing that H may be substantially decreased through the transition (see 
figure 2 (b ) ) .  Intermediate between the extreme cases of a weak undular hydraulic 
jump with extremely slight energy loss and a strong fully turbulent one, there 
is the case of a jump led by a breaking wave with smooth ones behind; a large 
fraction of the energy dissipation according to Rayleigh’s theory may then occur, 
yet the effect of wave resistance may still be significant. 

We shall see later that every one of the aspects of open-channel flows noted 
above has a counterpart in axisymmetric swirling flows, although the analytical 
problem for the latter is much more intricate. As soon as the corresponding set 
of basic properties of conjugate states has been established in general for swirling 
flows, the explanation for vortex breakdown will be evident as an exact parallel 
to the foregoing explanation for the hydraulic jump. Indeed there will hardly be 
need to set out the argument again in the new context. 

There is another property of the hydraulic jump which evidently carries over 
to vortex breakdown, but which is not represented explicitly by the present 
theory. A hydraulic jump will arise spontaneously on a supercritical stream in a 
long uniform channel only when F is fairly close to unity (values near 2 are 
typical). On a highly supercritical stream, a jump will not occur unless precipi- 
tated by some special means, such as an obstruction spanning the bed of the 
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channel, whose removal would result in the remains of the jump being swept 
away downstream. In  other words, a jump is possible only when the situation 
downstream is capable of bearing the subcritical state of flow that would be 
developed in the rear of the jump; or, in the language of practical hydraulics, 
we say that the jump must be matched to the ‘backwater’ conditions. By analogy, 
the most dangerous condition with regard to the possibility of spontaneous 
vortex breakdown is a marginally supercritical state of flow. Nevertheless, very 
violent breakdowns from a far supercritical state may occur when there is some 
special formative agency, such as an adverse pressure gradient along the axis of 
the vortex. 

3. Properties of perturbed cylindrical vortices 
In  preparation for Q 4, we note some details from the linearized theory of small 

disturbances in frictionless axisymmetric swirling flows. Let x and r denote 
axial and radial co-ordinates, and let y = $rs. In  the primary flow, which is taken 
to be cylindrical and to fill the space bounded by y = a, the axial velocity W(y) 
and swirl velocity V(y) are prescribed functions of y alone. Accordingly, a stream- 
function Y(y) can be defined such that W = d Y / d y ;  and the circulation 

27rrV = 27rK(y), 

say, and hence the quantity I = $K2, are also known functions of y. 

3.1. Deductions by Sturm-Liouville theory 

Suppose now that this flow is given a stationary axisymmetric perturbation, 
such that the total stream-function takes the general form 

$(x, Y) = Y ( Y )  + e$(y) eyz. 
(For example, if y is a pure imaginary, say ia, this describes a standing wave 
of wavelength 2n/a.) Directly from the equations of motion linearized in e, 
or alternatively as is shown in the Appendix, it is found that $(y) must be a 
solution of the second-order differential equation (cf. Appendix, equation 

and the kinematical boundary conditions on the flow (Appendix, equations 
(A 20)) require that 

$(O) = 0,  $(a) = 0. (3.2) 

These equations comprise a Sturm-Liouville system, and the properties we 
first show are deduced directly from the general theory of such systems (Ince 
1926, Ch. 10). The conditions imposed in the usual development of the theory are 
satisfied in general here, in particular since the coefficient of $ in (3.1) is non- 
singular for 0 < y < a. [Even in the exceptional case where W has a zero in this 
interval, as will be considered briefly in Q 4.7, the alternative form of the coefficient 
indicated by equation (A 14) in the Appendix shows it to be still non-singular if, 
as may be assumed for any realistic representation of the flow, the circulation and 
total-head distributions are wholly continuous; thus W,, and (I,)& must become 
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proportional to W in the neighbourhood of its zero. However, in important 
respects to be explained in $4.7, this case is inconsistent with the collective in- 
terpretation of the properties of swirling flows which is demonstrated in the 
following pages, and which provides the basic explanation of vortex breakdown; 
accordingly, areservation should be made about it from the start.] The coefficient 
behaves like y-l as y + 0 since necessarily I --f 3w2y2, where w is the angular 
velocity at the centre; but solutions of (3.1) with singular behaviour at  y = 0 are 
ruled out from present consideration by the first boundary condition. 

As the factor multiplying y 2  in (3.1) is positive, the theory proves the existence 
of an infinite set of real eigenvalues yi ,  y;, y;, . . . (denoted herein their order along 
the axis of real numbers) which allow the corresponding solutions q50, $1, q52, . . . 
of (3.1) to satisfy (3.2), and whose only limit-point is y2 = +a (Ince, $10.61). 
Thus we see that the perturbation can always take an infinite number of forms 
with real exponential dependence on x (i.e. with y2 > 0) ,  but there is a limited 
possibility of standing waves (i.e. with y2 < 0, so that y = ia). A given state of 
flow may be termed supercritical if all the eigenvalues y2 are positive, so that no 
standing wave is possible, and subcritical if a t  least the first one yg is negative. 
Again, the state of flow investigated by Squire (1960)is critical in the present sense, 
since the condition yg = 0 assumed by him obviously divides those just defined. 

[The following physical interpretation of yo in the supercritical case is worth 
noting incidentally. Consider a supercritical flow which is undisturbed a t  infinity 
upstream, and which is disturbed locally either by some axisymmetrical obstacle 
or by a breakdown to the subcritical state. Then clearly the disturbance will 
diminish in the upstream direction ultimately as exp ( -  Iyoxl), since all other 
possible components of a disturbance which has become small will diminish 
more rapidly than this (i.e. yo yl, etc.). The extremity of the ‘nose’ which 
leads a mild vortex breakdown (see the photographs presented by Harvey 
(1963)) might well fit this description. Note that the nose will become longer for 
a weaker breakdown, i.e. for upstream conditions approaching nearer the critical 
ao that yg becomes smaller. Conversely, tt strong breakdown from a state of flow 
far beyond critical can only occur very abruptly.] 

A further distinction between supercritical and subcritical states will now be 
noted, which, though primarily analytical in character, will appear later to have 
important physical implications. For the moment we reconsider (3.1) as if y2 
were a free parameter and, for the particular case y2  = 0, take 6, to denote a 
solution which satisfies one of the boundary conditions (3.2). That is, we have 

throughout the interval (0 ,  a )  and q5c = 0 a t  one of the end-points. Since (3.3) 
is a linear equation, 9, is therefore determined completely except for an arbitrary 
constant multiplier. Now Sturm’s fundamental comparison theorem (Ince, 
$10.3) shows on comparing the coefficients of (3.1) and (3.3) that, if any eigen- 
value y: of the complete system is negative, then q5c oscillates more rapidly in (0 ,  a )  
than the respective eigenfunction q5n; on the other hand, q5c oscillates less rapidly 
than q5n if 7: is positive. It follows at once that q5c has at  least one zero for 
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0 < y < a if the flow is subcritical (7: < 0) ,  whereas q5c can have no zero in this 
interval if the flow is supercritical. In  other words, a necessary and sufficient 
condition for the existence of standing waves of finite length (i.e. for a subcritical 
state) is that the ‘test function ’ q5c should vanish at least once for 0 < y < a. 

3.2. Generalized speci$cation of supercritical and subcritical conditions 

At this point i t  seems most desirable to define a characteristic dimensionless 
parameter which, like the Froude number for idealized open-channel flows, 
will be greater or smaller than unity accordingly as the flow is supercritical or 
subcritical. Indeed, recognizing the generality of the basic motion of super- 
critical and subcritical states, one sees the need for a generalized definition 
independent of the details of the physical situation. We recall that the Froude 
number is defined in effect as the ratio of the (uniform) stream velocity to the 
velocity of extremely long waves relative to the fluid. For the purpose in question, 
however, such a definition is adequate only if the flow is uniform, since otherwise 
the absolute wave velocity-which has to vanish for long waves propagating 
against a critical flow-is generally not the sum of the mean flow velocity and the 
wave velocity found for propagation over stationary fluid (e.g. see Burns 1953). 
We therefore propose the following definition which will serve for every situation. 

Let c+ and c- denote the absolute velocities, measured positively in the 
direction of flow, a t  which waves of extreme length propagate respectively with 
and against the flow. The general problem of finding these velocities is left to the 
Appendix, §d ;  but we may note here the fairly obvious facts that whereas c+ 
is necessarily positive, c- may have either sign, being positive when the convective 
action of the flow on the waves outweighs the relative propagation (the super- 
critical case) and negative when the waves can make headway upstream against 
the flow (the subcritical case). Accordingly we define 

as our universal characteristic parameter, having that N > 1 specifies super- 
critical conditions in the general sense and N < 1 subcritical conditions. [In the 
case of the open-channel flow, we have c+ = (gh)t+u and c- = - (gh)*+u, so 
that (3.4) recovers the usual definition of the Froude number F = u/(gh)*.] 

3.3. The generul effect of swir l  

Supposing that the original flow before a breakdown is always unidirectional 
(W > 0) ,  we have that in the absence of swirl it  would necessarily be supercritical; 
for with I, = 0 everywhere the solution of (3.3) vanishing at y = 0 is 

which can have no zero for y > 0 except where W = 0. Moreover, when the cir- 
culation steadily increases outwards (I, > 0) ,  as is usual in the flows preceding 
vortex breakdowns (see Hall 1961), the influence of the swirl on the flow con- 
dition as represented by N is always in the direction from supercritical towards 
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subcritical. This is evident from the fact that any enlargement of Iu throughout 
(0, a)  makes the coefficient in (3.3) more positive, and so makes the solution vary 
more rapidly-i.e. tend towards achieving a complete oscillation within (0, a) .  
By consideration of travelling waves, as in the Appendix, gd, it  readily appears 
that a reduction of the swirl uniformly to zero corresponds to the limit N -+ 00. 

Therefore, since breakdowns in practice appear to be the ultimate outcome 
of the amount of swirl getting larger (or rather the relative amount as measurable 
by the helix angle-see Harvey (1962)), we must regard the approach to breakdown 
conditions as, in effect, a reduction of N from high supercritical values towards 
the critical. Hence we base our investigation on the assumptions that the 
original flow is supercritical, and that breakdowns occur when N is brought down 
locally to some value not much greater than unity.? 

Suppose, for example, that W = xW(y) and V = wV(y), where x and w 
are numerical factors which are varied parametrically while W ( y )  and V(y) 
remain the same. Dimensional reasoning shows that N will depend only on the 
ratio w / x ,  i.e. on the helix angle at some representative y; and it is evident 
from what has been written above that N will vary in some way inversely with 
w l x ,  so that N --f co for w / x  -+ 0 (cf. the results for the two examples in $5, 
particularly equations (5.11) and (5.28)). 

Some further remarks on the present aspect are made at the end of 0 4.6. 

3.4. Wave resistance and group velocity 

Two further results needed as details of the complete explanation for vortex 
breakdown have to be noted here, although the proofs of them are deferred to 
the Appendix. First, we consider the ‘wave resistance’ or flow-force reduction 
associated with the standing wave possible in the subcritical case, it being sup- 
posed that the process of wave formation does not alter the total head (or energy 
per unit mass) on any stream surface. For infinitesimal standing-wave disturb- 
ances in the form $(y) sin (ax + v), equation (A 25) in the Appendix shows that 
the change in flow-force from the value for the undisturbed flow is independent 
of x, as it obviously must be on physical grounds, and is necessarily negative. 
This property of flow-force reduction is the counterpart of a property of gravity 
waves mentioned in 02.S Although the property is definitely established only 
for infinitesimal waves, it  is entirely reasonable to suppose that the flow-force 
reduction will increase steadily with increasing wave amplitude up to finite 
magnitudes, just as in the known case of gravity waves. There is as yet no avail- 
able theory of finite-amplitude waves in swirling flows with general velocity 
distributions. 

The second result is that the group velocity of the standing waves is directed 
downstream, which is another property in common with gravity waves. There 

-f One cannot in general be more specific than this about the location of vortex break- 
downs, just as one cannot for hydraulic jumps-see the last paragraph of $1 ,  also the 
second of 6. 

1 It should not be thought that this property is common to all standing-wave systems. 
A contrary example is provided by capillary waves on a liquid stream; since they form 
in front of a fixed obstacle, the corresponding wave resistance experienced by the obstacle 
must be equivalent to a flow-force increase upstream. 
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is a fairly obvious physical argument suggesting that this property must be 
concomitant with the first; but to prove it definitely one has to consider waves 
travelling a t  velocity c and examine the limit of their relative group velocity 
a(dc/dcc) as c + 0. This is done in the Appendix, §d. Subsequent to the intro- 
duction of conditions productive of waves, the wave-train will spread away 
from its point of origin-i.e. develop wave by wave-at a rate equal to the group 
velocity. This general result applies precisely only to infinitesimal waves, of 
course, but finite-amplitude waves can reasonably be expected to have the same 
direction of formation, as is known to be the case for gravity waves. 

4. Theory of finite transitions between frictionless cylindrical flows 
4.1. Basic ideas 

We may regard as the fundamental dynamical properties of a steady axisym- 
metric flow that the total head H and circulation 2nK have fixed values on any 
stream-surface $ = const. (cf. Appendix, $a).  Thus we may write 

yv2 = 2h'2($) = I($), 

PlP + g( w2 + V 2 )  = H($L 

(4.1) 

and, confining attention to situations in which there is no radial component of 

(4.2) 
velocity, 

where p is pressure and p density. For a cylindrical flow as assumed, V ,  W and 
$ are functions of y alone. The idea implied here is that (4.1) and (4.2) represent 
completely the dynamical conditions for the existence of a state of flow with 
cylindrical stream-surfaces in a given frictionless system; and obviously there 
can be a multiplicity of such states within the same system, each corresponding 
to different kinematical conditions. Moreover, we shall presently demonstrate 
the important fact that, even with fixed kinematical conditions, the specification 
of I ($)  and H ( $ )  does not necessarily determine a flow uniquely. 

The general dynamical problem represented by (4.1) and (4.2) is now re- 
approached in a somewhat unusual way. Consider the following integral expres- 
sing the flow-force 8 of a cylindrical flow bounded by y = a: 

s = 2n ( p  W2+p) dy. l o U  
Substituting for p from (4.2), then for V2 from (4.1), and finally putting 

w = $* = d$/dy, 

we get 

(4.3) 

(4.4) 

It will next be shown that the dynamical problem is represented implicitly by 
the variational equation 68 = 0. Writing the integrand for short as f($*, $, y), 
we have that the integral (4.4) is stationary for weak variations with fixed end- 
points (Fox 1950, § 1.3; Bolza 1961, § 17) if $ satisfies the Eulerian characteristic 
equation 
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whose explicit form is 
$UU - H’($) + $I‘($)/Y = 0. (4.5) 

(Here the accents denote $-derivatives.) But (4.5) is identifiable with the general 
vorticity equation which also describes the dynamical problem completely; 
specifically, it  is the same as equation (A 13) in the Appendix with the x-derivative 
put equal to zero. [Note that (4.5) can also be obtained by differentiating (4.1) 
and (4.2), and then using the equation of radial equilibrium pu = *V2/y (cf. 
Appendix, equation (A 17)).] 

We have thus established that if a curve drawn in the plane ($, y) is to repre- 
sent a physically realizable cylindrical flow, then it must be an extremal of the 
integral S. It should be noted that the variations S@ which have to be considered 
in respect of the equation 6s = 0 are not implied to have any physical significance; 
we have merely demonstrated an analytical property of any function $(y) 
which describes a real flow. 

Suppose a certain state of flow is fully specified, with I and H given in the first 
place as functions of y in the interval (0, a )  but hence expressible as functions of 
the known stream-function, say kA. Then, of course, $A will be a ‘particular 
integral’ of (4.5); more precisely, the known relationship of $A to I and H will 
fix the particular form of the equation.? But (4.5) is a second-order equation 
whose general solution involves two arbitrary constants. Furthermore, if the 
total flow rate Q = 277$A(a) is fixed, there are just two boundary conditions to 
be satisfied for the solution to represent another flow realizable within the same 
cylindrical space as the original one, namely the kinematical conditions $ ( O )  = 0 
and $(a) = $A(a) [cf. Appendix, end of $b].  When (4.5) is non-linear, which is 
the usual case, both arbitrary constants have to be chosen precisely to make the 
general solution satisfy these conditions (the different requirement in the excep- 
tional case where (4.5) is linear will be explained below); and with a fair degree 
of generality, though allowing it may not be complete, we may assume that this 
can be done a t  least once. Thus it appears that there can exist a stream-function 
$B which is distinct from $A, which satisfies the dynamical conditions prescribed 
by the original flow, and which coincides with $A at the end-points of (0 ,  a) ,  
so satisfying a continuity relationship with the original flow. One sees therefore 
that a flow of the present type can be one of a ‘conjugate’ pair, the second of 
which can be connected to the first within the same cylindrical boundary; as the 
sufficient attribute of the pair in respect of dynamical conditions, each stream- 
surface present in both flows conserves mutually the same circulation and total 
head in passing from one to the other. Figure 3 illustrates the possible form of a 
conjugate pair of solutions $A and $B. 

It is generally not true, however, that only a single conjugate state exists for a 
given cylindrical flow with swirl; for instance, the two specific cases treated in 

t This idea may perhaps be more easily understood by reference to the examples con- 
sidered in $ 5 ;  for instance, a glance over equations (5.1) to (5.4) will show a t  once what is 
implied by the general statement above. It should be noted, however, that an ezpZicit 
representation of the terms H’(@) and I / ( $ )  in (4.5) would be impossible in many examples; 
that is to say, even when these terms and Ware known functions of y, it might be impossible 
to obtain explicit forms for @(y) = S W d y  and a fortiori for its inverse y($) and hence 
H’($) and I / ( @ ) .  
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$ 5 reveal an indefinitely large number of mutually conjugate states. But vortex 
breakdown will be explained presently as a transition between a certain pair of 
‘adjacent’ states, and any others indicated by the theory apparently have no 
physical significance. To fix the concept of these ‘adjacent’ states tentatively 
for the time being, the following observations are made. A multiplicity of con- 
jugate states may be ordered according to their respective values of S ;  and, 
simply from the form of the integral (4.4), it  is to be expected that S will get pro- 
gressively larger as the corresponding solution curves joining the points [0 ,  01 

Supercritical (S  min.) 

Subcritical (S neither 

0 a Y 
FIGURE 3. Illustration of conjugate solutions. 

and [$A(a), a]  in the ($, y)-plane get more sinuous. Thus there is no reason to 
suppose in general that the sequence of values of S would have an upper limit, 
but obviously it must have a lower limit. The two adjacent states in question are 
in fact those giving the two smallest values of S. A further interpretation is that 
the adjacent states are represented by solution curves which, like those in figure 3, 
do not intersect at their end-points. 

[Before proceeding with the main argument, we need to acknowledge an 
exception to the present conclusions which arises when (4.5) is h e a r .  For this 
case it is necessary that throughout (0, a )  bothH and1 take the form k + Z$ + rn$2, 
where k ,  1 and m are constants, and so the physical possibilities are easily recog- 
nized. No such case is even remotely relevant as a model for the vortex break- 
down phenomenon; and it is perhaps worth emphasizing that a ‘combined 
vortex’ (i.e. a core with solid-body rotation surrounded by a potential flow- 
see $5) is not a case in question, even though H and I have this particular form 
within each of the two distinct regions of the flow. Together with the boundary 
conditions, a linear form of (4.5) poses an eigenvalue problem akin to the one 
defined in $3, except that a small disturbance is no longer implied. If any con- 
jugate solution is possible, then an infinitely variable set of solutions must be 
possible, since one constant of the general solution is left undetermined by the 
boundary conditions. The fact that the integral (4.4) for S then possesses a 
continuous field of extremals all passing through the same end-points implies that 
its value is the same for every one of the possible solutions.] 
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4.2. Application of the variational principle 

Except in respect of the minor point covered by the preceding sentence, our 
variational principle is immaterial to what has been said about the existence of 
conjugate flows; but the principle appears to be the only means of proving several 
important general properties which are essential to the explanation for vortex 
breakdown. To this end the second variation of the integral (4.4) for X has to be 
considered. But before any mathematical argument relating to the second varia- 
tion is introduced, it is desirable to emphasize further that the role of (4.5) as the 
vorticity equation is fundamental to the dynamical problem, rather than its 
incidental role as Euler’s equation for 6s = 0. For this reason the variational 
principle can be framed arbitrarily in the most convenient manner possible, 
namely, under the analytical restriction that a solution of (4.5) should furnish 
merely a weak extremum of X, and this avoids the considerable mathematical 
complications which relate to the generalized sufficient conditions for an extre- 
mum (Bolza 1961, $17). 

For the moment leaving aside the question of sufficient conditions, we first 
observe that, since azfla$i = 1 is positive, Legendre’s necessary condition for a 
minimum is satisfied (Fox 1950, 3 1.5; Bolza 1961, § 11). Thus, for arbitrary weak 
variations about an extremal, $ = $,(y) say, which is a solution of (4.5) and 
therefore gives 6s = 0, it is possible that the second variation a2S > 0 so that 
X, is a proper minimum, but there cannot in any case be a maximum. It appears 
extremely likely, furthermore, that among a set of conjugate solutions there is 
generally one giving a minimum of X; for we reason intuitively that the integrand 
of (4.4) is a positive function of $, and is otherwise a finite function of 
position in the ($, y)-plane, so that between any two fixed end-points a path can 
presumably be found which comprises between the requirements of keeping the 
square of its slope small and keeping to ‘low’ contours of the function 

H(11.1- iv($) /Y* 
To proceed on a definite basis, however, we shall assume that S is in fact a mini- 
mum for the particular extremal A representing the given flow which defines 

We now consider a conjugate state B which is adjacent to A according to the 
following definition. From either of the end-points in the ($, y)-plane, say from 
[0, 01 for definiteness (see figure a), an infinite set of solution curves I? for (4.5) 
can be drawn with varying initial slope, thus generating a field of extremals. 
The curves r which are infinitesimally displaced from A cannot intersect i t  
between the given end-points, for if they did they would, being themselves 
extremals, provide a form of variation from A for which a2S = 0 (see §§4.4,4.5), 
so that X, would not be a proper minimum. Thus, as their initial slope is varied 
from that of A ,  say by amount A, the curves first diverge away from the given arc 
of A as indicated by figure 4. But eventually, when I A I is large enough, one of the 
set I‘ must pass through the opposite end-point of A if there is to be a conjugate 
solution; and it is such a curve with the least possible value of IAI that we define 
as the adjacent conjugate B. We have therefore that B intersects A only at  the 

H($w and I ($ ) .  
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end-points, and that extremals r which are contained between A and B all inter- 
sect B but none intersects A .  

4.3. Preliminary demonstration of properties of conjugate $ow B 

We go on to establish as general properties that 8, > S,, and that the integral 
giving S, is neither a minimum nor maximum. In the first place a simple partially 
geometrical argument will be presented; but later the conclusions will be con- 
firmed by a more powerful analytical demonstration. 

Suppose that the space between A and B is covered by an infinite set of curves 
$ = ~ ( y )  which may depend on one or more parameters and which connect the 
end-points without anywhere else overlapping. Obviously none of these curves 
can be a single extremal over its entire length, except the two bounding the set 
by coinciding with A and B. We now need to consider whether it is possible to 
construct the curves so that the quantity S,, found by performing the integration 
of (4.4) along $ = 7, varies monotonically through the set. For successive curves 
$ = 7 and $ = 7 + 87, the variation of ST is, by an elementary result of the calcu- 
lus of variations, 

(4.6) 

where (4.7) 

Since 67 always has the same sign, our proposition will be established if we show 
that L can have the same sign at all points along every curve of the set. Note that 
L = 0 is Euler's equation (4.5), so that the integrand of (4.6) will vanish wherever 
$ = 7 coincides with an extremal over a finite arc. (For instance, SS, becomes a 
quantity of second-order smallness as 7 --f l l f A ,  which makes L -+ 0.) It also 
follows that at any point L < 0 when vVv > and vice versa, if llf = $e be 
an extremal pasing through this point. 

When the set of curves is begun a t  A ,  and B lies below as in figure 4, then we 
have 67 < 0. Since S, is a minimum, SS, must become positive as 7 begins to 
depart from and so a choice of curves giving L < 0 is a possibility, whereas 
L 2 0 is impossible. (The equality sign in L < 0 means only that L may vanish 
over part of a particular 7-curve; it has already been made clear that A and B 
are the only curves with L = 0 everywhere.) Thus it remains to show that a 
choice can be made giving L < 0 and hence SS, > 0 everywhere. One intuitively 
sees the feasibility of this as soon as figure 4 is reconsidered, remembering that the 
field of extremals I? radiating from the origin between A and B stays below A 
and crosses only B. Consequently, any 7-curve starting from the origin in align- 
ment with one of r has to be curved positively away from this extremal, so making 
L < 0,  in order to be taken to the opposite end-point. Moreover, it appears that 
the ?-curves can always be steered through the part of T initially above them in 
such a way as to keep L < 0. Hence we conclude that a set of 7-curves can in fact 
be chosen so as to make S increase steadily as B is approached from A ;  and a 
corresponding argument with obvious modifications establishes the same 
conclusion for the case where B lies above A .  (But note that this conclusion would 
certainly not hold if there were any extremal between A and B which also passed 
through the given end-points.) By the existence of any such choice of 7-curves, 
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it  follows immediately that S, > S, and that B cannot give another minimum; 
and, as explained earlier, B cannot give a maximum. 

There is one particular choice for the 7-curves which deserves noting. Suppose 
each curve follows an extremal r up to near its intersection with B, then turns 
rapidly and continues to the opposite end-point along B. We then have L = 0 
along each arc of the curve coincident with the respective extremals I’ and B, 
and the integral (4.6) is comprised entirely from the contribution at the corner 
between the two arcs. When corners of small yet finite size are considered, it 
appears very clearly that SX, > 0;  but the particular expression (4.6) for SS, 
is not directly determinate in the limit as the corner size is reduced to zero. 
However, the value of SS, in this limit is immediately forthcoming from Weier- 
strass’s theorem, which will be used in $ 4.5 to obtain an expression for S, - 8,. 
Note, by the way, that in the limiting case of the present 7-curves the sharp 
corners occur over only part of B; for their abscissae have a lower limt gl, a t  
which B first enters the field I’ (this is the abscissa of the ‘conjugate point’ or 
‘kinetic focus’ of B, which is to be discussed in $4.4). 

On further consideration of figure 4 it can be inferred that a solution curve 
for (4.5) started from the origin with a slope somewhat less than the slope of B 
will intersect B for y < gl. Hence we see the possibility of a third conjugate 
solution such as represented by curve C in the figure; the fact that C also inter- 
sects A just once between the end-points can be shown by reasoning on the same 
lines as hitherto, but applied to a field of extremals radiating from the end-point 
[$A(a), a]. To compare S, with X,, the two separate regions circumscribed by 
C and B may be considered in turn, and for each the variation of 8, examined 
for ?-curves drawn between one end-point and the intermediate point of inter- 
section between C and B. The conclusion is that each of the two contributions to 
AS’, exceeds the respective contribution to X,, so that S, > S,, and X, also is not 
a minimum. By a continuation of this form of argument, it can be concluded 
that further conjugate solutions must give still larger values of S, none of which 
can be a minimum. We cover this matter only briefly here because evidently the 
existence of conjugate solutions other than A and B is not relevant to the physical 
problem. It may be noted, however, that the property of successively larger 
values of X for multiple conjugates is shown very clearly by example 2 in $ 5. 

4.4. Interpretation of supercritical and subcritical states 
On recalling a fundamental result from Jacobi’s theory of the second variation 
(Fox 1950, Ch. 2; Bolza 1961, Ch. Z), we discover an important physical implica- 
tion of the properties so far established. We have to consider particular variations 
s$(y) about an extremal, say $ = $A, whose arc over the interval (0, a )  is to be 
tested for a minimum of S ;  here E is a constant of first-order smallness, and $ is a 
solution of Jacobi’s ‘accessory equation ’. Because 

in the present instance, the accessory equation is given simply by putting 
$ = $, + s$ in Euler’s equation (4.5) and linearizing in s; thus it is 

aya$; = 1 and ayla$a$g = o 

A/?/ - WW.4) - W $ A ) / Y } $  = 0. (4.8) 
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Let q5 be constructed from the general solution of (4.8) so that q5 = 0 at one 
end-point of the integral S (i.e. # ( O )  = 0 or #(a )  = 0) .  Then, respective to the end- 
point taken, the ‘conjugate point’ or ‘kinetic focus’? is by definition the nearest 
point on the extremal whose abscissa y1 makes q5(yl) = 0. If it lies beyond the 
opposite end-point of the integral, this and Legendre’s condition are sufficient 
for a minimum. If it lies nearer than the opposite end-point, however, then S 
is neither a minimum nor a maximum irrespective of Legendre’s condition. 
Hence we see that each of these cases is represented in a conjugate pair of flow 
states A and B as previously defined; that is, the extremal arc A has no ‘kinetic 
focus, between the end-points, but B has one. Furthermore, extremal arcs 
G, etc., giving further conjugate states are all characterized in the second way. 

Now, the vital point here is that the accessory equation (4.8) is the same as 
(3.3), which was introduced specifically as the equation satisfied by the ‘test 
function’ q5c, but which is basically the dynamical equation for infinitesimal 
standing waves of extreme length. The equivalence of the two equations is 
demonstrated in the Appendix, $ b, where the coefficient of q5 in (4.8) is worked out 
explicitly as a function of y.  Hence we recognize the criterion for a minimum of S 
to be precisely equivalent to the test for supercritical flow conditions that 
was explained in 5 3. Again, subcritical conditions are seen to imply the existence 
of a ‘kinetic focus’ cancelling the minimizing property of the extremal arc 
which represents the flow. 

4.5. Purther analytical signiJicance of conjugate-jow properties 

The arguments used in $4.3 are to an extent intuitive, and so it is desirable to 
supplement them with the following analytical interpretation of the main facts 
which have been revealed about the adjacent flow states A and B. First, however, 
we should note that the rather difficult question of the existence in general of a 
field of extremals need not concern us here; for it is satisfactory to regard the set 
of solution curves l? as being implicit in the general physical model. That is to say, 
the existence of I’ is a necessary attribute to any system specified realistically 
by a particular choice of forms for I ( $ )  and H($). The physical necessity of the 
field can be recognized in the need for a range of solutions representing cases 
where the flow is connected into a second cylindrical space bounded at  y + a. 
Again, a continuous set of solution curves radiating inward from the opposite 
end-point is necessary to represent the range of physically possible cases where 
the flow is connected into an annular space. 

The curves I’ with the origin as their common point may be defined by the 
expression 

where k is a parameter-which could be, for instance, the initial slope of the 
solution $. Obviously, we have pk (=  @/ak) = 0 a t  y = 0 over the complete 
range of k. For any particular extremal of this set, say one specified by k = k,, 

t The former term is far more common, and the latter is strictly appropriate only to 
problems of particle trajectories in which there is a special mechanical interpretation of 
conjugate points; but the latter term will be used hereafter to obviate any confusion with 
our extensive other use of the adjective ‘conjugate’. 

39 Fluid Mech. 14 

II. = $(y;  k ) ,  (4.9) 
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i t  can be shown that its 
zero of the equation 

‘kinetic focus’ is at y = yl, 

$.k(y; k,) = 0;  

where yl is the next root above 

(4.10) 

and this also defines the point of contact of the curve with the envelope of the set 
I? (Fox, $2.9; Bolza, Q 15). 

Accordingly we arrive a t  the interpretation indicated by figure 4, in which 
the envelope is drawn as a dashed line (see also figure 6). Recognizing A and B 
to belong to a set of curves with a common envelope as shown in this figure, we 

0 Y1 a Y 
FIGURE 4. Guide to the analytical interpretation of conjugate-flow properties. 

see a t  once that B must touch the envelope for y < a if A does so for y > a, 
whereupon our identification of the envelope with the locus of the kinetic foci 
establishes the flow states A and B to be respectively supercritical and sub- 
critical. It should be remembered, however, that the physical problem as basically 
posed gives the extremal arc A only over the interval (0 ,  a ) ,  so that to produce A 
beyond y = a an analytic continuation of I ( $ )  and H($)  is necessary beyond the 
range of @ in which they are first defined. Thus, no essential physical process is 
represented by the continuation of A,  or in general by any construction in that 
part of the (e, y)-plane outside the strip 0 < y, 0 < @ < $A(a); but of course 
those details of figure 4 lying outside this ‘physical domain’ are nevertheless 
wholly determined by the specifications of the physical problem. 

To demonstrate that S, > S, in general, use may be made of Weierstrass’s 
theorem (Fox, $9.2; Bolza, $20). Thus we have, for the total variation of X 
between A and B, 

sB-sA = 2np/ouE(Pe,pB; @B,!/)dY, (4.11) 

where the Weierstrass E-function has now to be evaluated in respect of B, whose 
slope is denoted by pB, passing through the field of extremals I?, whose slopes 
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a t  points [$B, y] are denoted by pe. Recalling the form of the integrand in (4.4) 
we get 

= f ( P B ,  $B7 Y) -f(Pe, $B7 9) + (Pe-PB)fp(Pe, $ B 7  Y) 
= i k 4 - p : )  + (Pe-PBIPe = 4(PB-Pe)'* (4.12) 

[Note that for 7-curves of the type with sharp corners defined in the penultimate 
paragraph of 54.3, the variation SS,,, is given by ESy, if Sy is the difference in the 
abscissae of the corners of successive curves.] The result obtained from (4.11) 
and (4.12) is 

sB-sA = Tp/u: (PB-Pe)2dY, (4.13) 

where the lower limit of integration has been replaced by y1 because obviously 
E = 0 in the interval (0, yl). Thus we find that X,-S, is positive, as otherwise 
demonstrated in $4.3. 

4.6. The explanation for vortex breakdown 

It has now been proved generally that, for a primary flow which is supercritical 
in the sense defined in $3,  the conjugate state is subcritical and has a larger 
flow-force X. Together with the facts, noted at the end of $ 3, that the periodic 
waves which can be superposed on a subcritical flow cause a reduction in S 
and that they form only downstream from their originating agency, these results 
demonstrate a set of properties comprising a complete analogy with the set which 
was noted in $2  for open-channel flows, and which supported an entirely adequate 
explanation for the hydraulic jump. Our explanation for the vortex phenomenon 
is virtually complete, therefore, and for the details of the physical argument we 
need only refer back to $2. 

To sum up the essentials, vortex breakdown is explained as a ' finite-amplitude' 
transition from a supercritical state of flow upon which infinitesimal standing 
waves cannot occur. The conjugate subcritical state has an excess of flow-force 
which, if the flow were first held steady after the transition and then released, 
would be bound to generate an unsteady motion. For a mild transition, the 
excess of flow-force is small enough to be cancelled by the formation of waves 
in the subcritical regime created downstream, without necessitating significant 
energy loss. But for a strong transition the effect of wave resistance is inadequate 
to establish the flow-force balance demanded by a steady state; an energy loss 
is then required, which means that in practice a region of vigorous turbulence is 
generated. (Note the clear indication given by (4.4) that IS is reduced by a decrease 
in the total head H.)  

The following practical aspect comes to light when specific cases are considered. 
It appears that in examples typical of swirling flows in practice, the curve B 
representing the subcritical conjugate state in the ($, y)-plane generally lies 
below the curve A representing the supercritical primary flow, i.e. as shown in 
figures 3 and 4. For instance, although not forthcoming in the first example 
treated in $ 5  below, this property is found in the much more realistic second 
example. Thus, a tendency towards stagnation on the axis is apparently to be 
associated with the breakdown phenomenon, as indeed is indicated by the 
experimental facts (e.g. see Harvey 1962). 

39-2 
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Another practical aspect worth emphasizing, recalling Q 3.3, is that super- 
critical states are, in a general classification amongst possible flows, characterized 
by comparatively small amounts of swirl. That this must be so becomes fairly 
obvious on recognition that swirl provides the ‘stiffness ’ element analogous to 
gravity in the hydraulic problem-more precisely, it does so where the square 
of the circulation increases outwards, as usual near the axis of a real vortex. 
This general role of swirl is indicated clearly by equation (3.1); we see that a 
larger (positive) I, always gives a more rapid rate of oscillation of the solution 
and hence a greater possibility of an eigenvalue y2 = -a2 < 0 representative 
of standing waves. Zero swirl, the most innocuous case in present respects, 
corresponds to an indefinitely far supercritical state, just as zero gravity corre- 
sponds to an infinite Froude number.? 

4.7. Xpecial cases of conjugateJEow B 
It needs to be emphasized that the subcritical cylindrical flow B cannot occur 

intact in the rear of a vortex breakdown, even though its existence as a conjugate 
to the primary flow A is an essential element of the breakdown mechanism. 
Nevertheless, for a mild breakdown manifesting a wave structure, the actual 
flow is very likely to preserve the main features of B;  that is, the theoretical 
axial-velocity and swirl-velocity distributions for B may still be recognizable 
more or less distinctly despite the deformation into waves. We shall now con- 
sider two instances of a specially distinctive feature of an actual flow which may 
be represented by the solution for B. 

Particularly in cases of a mild breakdown, a region of reversed flow is sometimes 
observed near the axis (see Harvey 1962); and this might correspond approxi- 
mately to a theoretical case such as is illustrated in figure 5 (a) .  Here the portion 
of the curve B lying below the y-axis, for 0 < y < yc, represents an eddy of fluid 
contained within the stream-surface $(yc) = 0 which connects to the axis in 
the primary flow upstream from the transition. It must be noted, however, 
that this inner flow is simply an analytic continuation of the main flow (i.e. 
with 0 < $ < k A ( a ) )  which originates upsteam, and so it has no essential corre- 
spondence with the actual physical circumstances of a central eddy-in which the 
viscosity of the fluid is inevitably an important factor. 

Another anomaly of this type of solution B is that apparently the flow may 
be unstable. In  keeping with this interpretation, the means explained in the 
Appendix, §c,  for finding the group velocity of standing waves becomes indeter- 
minate when W = $, changes sign in (0 ,  a ) ;  although a standing-wave solution 
of the small-disturbance equation can be found, there appears to be no neigh- 
bouring travelling-wave solution with a real value of phase velocity. Instability 
of the subcritical regime is evidently a common feature of vortex breakdown in 
practice; but, for the reason noted a t  the end of the last paragraph, this aspect 
of the theory is unlikely to correspond precisely with an actual instability. 

t At &st sight this matter tends to be somewhat obscured by one’s natural inclination 
to  regard very high Froude numbers as ‘dangerous’. The slight conceptual dficulty which 
may confront the practically minded arises from the fact that in hydraulic engineering 8 
high Froude number means a large flow velocity, never a small g ! 
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A related case which has a special application free from the previous diffi- 
culties is illustrated in figure 5 ( b ) .  Here the flow B surrounds a core of stagnant 
fluid, or a cavity, which extends from the axis to y = yc. Now, although this is 
an unrealistic model for a vortex breakdown, it well describes the situation 
where a filamentary vapour cavity is formed along a vortex in water, the best- 
known instance being the cavitation of tip vortices shed from ships’ propellors. 

Region of circulation 
of fluid not present 
in original How A 

Region of 
reversed How 

( b )  

FIGURE 5. Special cases of conjugate flow B. 

The latter phenomenon is not, of course, a breakdown in the sense we have defined; 
for irrespective of the previously considered factors the specific condition of 
formation is that the pressure on the axis-which gradually decreases in the flow 
direction as the vortex trailing from a blade rolls up-ultimately falls to vapour 
pressure. However, since the beginning of the cavity is evidently describable 
as a transition between two conjugate (energy-conserving) flows, we can ips0 
facto apply some of the ideas of this paper. Indeed, they appear to be necessary 
to show in general why such a cavity has standing waves upon it, as is observed 
experimentally. We assume that the flow A preceding the cavity is supercritical, 
which is reasonable since cavitation would be less likely to occur after an ordinary 
breakdown to a subcritical state (which would reduce the velocity on the axis 
and so raise the pressure-cf. $ 5 ,  example 2). This assumption is anyway bound 
to hold in some circumstances because, by adjustment of the environmental 
pressure level, the cavitation condition can be produced independently of the 
supercritical-flow condition. 
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The solution B is no longer a conjugate of A according to the fundamental 
definition since the respective extremal curves now have only one end-point 
in common, and so the general conclusions hitherto established do not apply 
directly. The essential situation is found, however, to be just the same as before. 

First, it  appears that the flow B is always subcritical in the general sense, 
because standing waves can always occur in such a flow surrounding a cavity 
at constant pressure. But, for obvious reasons, this fact no longer implies the 
existence of a ‘kinetic focus’ at an interior point of the extremal arc B. For the 
following argument we shall assume for simplicity that it is actually a mini- 
mizing arc like A ; but the case where it is not requires only a minor complication 
of the argument. According to this assumption, the curves A and B can be con- 
sidered as members of a field of extremals I” radiating from their common end- 
point a t  y = a, those of which between A and B cross the y-axis in the interval 
(0, y,.). The slope of an extremal at its point of crossing the y-axis will be denoted 
by s. 

The flow-force excess for the subcritical r6gime is now given by 

A S  = SB -k 27Ipoyc- SAY (4.14) 

where po is the pressure within the cavity. In the physical situation of a cavi- 
eating vortex, the cavity must have a stagnation point a t  its forward end, which 
means that po = pH,, where H ,  is the value of the total head on the axis. The 
integrand of (4.4) reduces to H ,  if the path of integration in the ($, y)-plane is 
taken along the y-axis; and therefore A S  is the total variation of the integral 
between the curve A and the curve comprising B together with the portion of the 
y-axis from the origin to yc. Hence Weierstrass’s theorem used just as in 54.5, 
but now with respect to the field I”, shows directly that 

A S  = 71p /,“s2 dy. (4.15) 

Thus, as was expected, A S  is necessarily positive. 
Note that the existence of a stagnation point on the surface of a cavity at 

constant pressure implies that the fluid is a t  rest everywhere on its surface. The 
boundary condition W(yc) = 0, together with +(ye) = 0 and the kinematical 
condition at y = a, will be enough to determine a conjugate solution $B from the 
general solution of (4.5). 

4.8. C o n ~ ~ ~ d ~ n g  t ~ e o r e t ~ ~ a ~  points 
Two matters remain deserving attention. There is first the question of whether 
or not our general conclusions depend significantly on the feature of our theo- 
retical model that the flow is finitely bounded in the radial direction. In  the case 
a -+ co, perhaps the main innovation arising in the theory concerns the general 
eigenvalue problem explained in 3 3. Whereas negative eigenvalues y2 = - a2 
still occur as discrete numbers, if at all, the system now admits a continuous 
spectrum of positive ones. As before, however, only the negative ones have a 
fundamental role in our physical interpretation of flow properties, and so it would 
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appear that the general conclusions respecting supercritical and subcritical states 
still stand. Again, extremal curves of infinite length pose considerable analytical 
difficulties, but intuition suggests that the leading deductions from our varia- 
tional principle should still remain valid. As evidence of this, example 2 in $ 5  
gives for an unbounded flow clearly determinate results which are wholly con- 
sistent with the general theory. 

The second point concerns the assumption of axial symmetry. As Harvey 
(1963) has shown, the vortex breakdown phenomenon can be made almost 
exactly axisymmetric; and though under less rigorous experimental conditions 
the phenomenon may be subject to a considerable degree of asymmetry, and also 
to fluctuations in time, there seems little doubt that its essential mechanism is 
explained by the present model of a steady axisymmetric flow (just as well, one 
might say, as hydraulic jumps are explained essentially by a two-dimensional 
model, notwithstanding that they often occur in practice with considera5le 
spanwise non-uniformity). From a theoretical viewpoint, however, the question 
naturally arises whether there exists analogous mechanisms with different 
overall geometry. Evidently the answer is negative, as may be reasoned with 
reference to a general form of infinitesimal standing waves whose dependence 
on the cylindrical polar angle 8 is cosn8. The wave properties for the present 
case n = 0 are found to be essentially different from those for n > 0, so that our 
arguments regarding supercritical and subcritical states break down in the other 
cases. For a stable cylindrical flow, it appears that standing waves with n = X 
first become possible a t  very small wavelengths as the swirl is increased from zero; 
thus the system is less ‘stiff’ for longer waves, the opposite of the case n = 0. 
For n > 1, standing waves are always possible whatever the (non-zero) magni- 
tude of the swirl, and so no supercritical state can be classified. 

5. Examples 
Two examples will be given to illustrate the results which have been proved 

generally. The first provides a simple non-linear form of (4.5) which, though it 
cannot be solved explicitly, allows us to demonstrate clearly the existence of 
conjugate solutions; but unfortunately the distribution of swirl velocity assumed 
for this example is not typical of real flows. The second example is the only one 
which has been found admitting solution in closed form, but it presents anexcep- 
tional aspect of the general analytical problem. This ‘combined vortex’ flow 
consists of two parts for each of which equation (4.5) takes a linear form, and the 
‘non-linearity ’ essentialt to the overall problem enters through the intermediary 
boundary conditions, which apply on a stream-surface specified by the dependent 
variable @ rather than the independent variable y. As qk and W = d$./dy are 
made continuous across this interface, as also are the coefficients of the respective 
linear equations (though the derivatives of the coefficients are not), the system 
provides the same overall properties as a wholly continuous second-order non- 
linear system of the general class considered in 3 4. 

systems. 
t Essential to avoid degeneracy of the sort explained in $ 4  with reference to linear 
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Example 1. Simple illustration of non-linear problem 

For the primary flow A in 0 < y < u, we take 

and I w = 1 so that $ = y, 

= ($)& KY, 

where K is a constant. Hence we have 

so that 

And, by equation (A 18) in the appendix, we have 

H’($) = K2y K2$. (5.3) 

The general equation (4.5) for the stream-function therefore becomes 

A particular solution of (5.4) obviously is $ = $A = y, representing the primary 
flow. 

We shall now demonstrate the existence of second solutions $B which satisfy 
boundary conditions $B(0) = 0 and $ B ( ~ )  = $ A ( ~ )  = a. In  the ($, y)-plane, 
consider a solution curve B started from the origin with a positive slope less than 
unity, so that initially B lies below curve A ,  i.e. below $ = y (see figure 6). 
Equation (5.4) shows that $vy > 0 for 0 < $ < y, and so B has positive curvature 
wherever it lies below A .  Hence B must inevitably intersect A if sufficiently 
far produced. Again, if B is started from the origin with a slope greater than 
unity, its curvature is everywhere negative while it remains above A ,  so that it is 
bound ultimately to intersect A away from the origin. [The two B-curves in 
figure 6 are drawn accurately for K = 1, their initial slopes being and $. The 
curves intersect $ = y a t  y = a, = 2-76 and y = a2 = 3-81, respectively.] 

Note incidentally that $v, < 0 for $ < 0,  which proves that a solution curve 
started from the origin with a negative slope cannot again intersect $ = y. 
Thus a conjugate solution with a region of reversed flow is impossible in this 
example. 

Since the point of intersection of B with A will obviously vary with the choice 
of positive initial slope for B, we may conclude that conjugate solutions exist 
for a range of problems, i.e. with different a. Next we have to consider the nature 
of possible conjugates for a given a. 

First, the condition for critical flow is derived. Putting $ = y + # in (5.4), we 

is evidently the equation for long standing waves also interpretable as Jacobi’s 
accessory equation for the extremal $A = y. The solution of (5.6) vanishing a t  
y=Ois  # = CsinKy, (5.7) 
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whose next zero is at y = T / K .  Hence, recalling the results of $93 and 4, we con- 
clude that the primary flow is supercritical (curve A giving a minimum of 8) 
if a < n / K ,  and subcritical if a > T / K .  

Now, comparison of (5.5) and (5.6) shows that for a given 4 (i.e. for a given dis- 
placement from curve A ) ,  the value of q5yy for the solution of the linearized equa- 
tion is greater by amount ~ ~ 4 ~ / y  than the value for the ‘exact’ solution. From this 
it follows that a solution curve B started with positive slope less than unity (e.g. 

@ 

4 

3 

2 

1 

0 

Envelope of 
solution curves 

‘\ / 

/// 1 3  1 4  

a1 a2 Y 1 2 

FIGURE 6. Solutions of ykTYTY = @ - @2/y. 

curve B, in figure 6) will not intersect A until beyond y = T / K  where the solution 
of (5.6) has a zero. Again, a solution curve like B, in figure 6 will necessarily 
intersect A for y < T / K .  Thus we have that a supercritical primary flow possesses 
a conjugate of type B, with increased velocity near the axis (this is an unrealistic 
property which may be regarded as a consequence of the unrealistic assumption 
that V cc r2).  We also have that a solution curve like B, can only represent a 
conjugate to a subcritical case of flow A .  

It remains to verify that a conjugate flow of type B, is always subcritical, 
and one of type B, always supercritical. To do this the accessory equation for an 
extremal $ = $B(y) has to be considered. Putting $ = lcrg +u in (5.4)’ we obtain 
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whose linearized form is the accessory equation. For a case like B,, comparison 
of the coefficients in (5.6) and (5.8) shows the solution of the accessory equation 
for B to oscillate more rapidly than the solution (5.7) for A ;  but, of course, this 
observation is inadequate to prove that the present solution oscillates inside the 
interval (0 ,  a). However, we know there is an exact solution u = y - $B of the 
non-linear equation (5.8); and this solution, representing the displacement of 
curve A from curve B, oscillates exactly once over (0 ,  a).  By an argument similar 
to the one used in the last paragraph, we deduce that in the present case of B, 
this finite solution oscillates less rapidly than the solution of the linearized equa- 
tion obtained from (5.8); and it follows immediately that B, has a ‘kinetic focus’ 
inside (0 ,  a ) ,  so that a subcritical flow is represented. A corresponding argument 
just as readily proves that B2 must represent a supercritical flow. 

As an implication of these results, it  may be considered that the envelope of a 
field of extremals radiating from the origin touches $ = y a t  y = n/K and has 
positive curvature there. This envelope is sketched as a dashed line in figure 6. 

It is not true that for a supercritical primary flow the subcritical conjugate 
B, is unique, and we have to recognize the possibility of an indefinitely large 
number of further subcritical flow states represented by solution curves which 
oscillate more than once about $ = y in the interval (0 ,  a).  However, these will 
give values of X larger than the values for the state B,, which can be considered 
as naturally adjacent to the given supercritical state A .  As explained earlier, the 
physical mechanism of vortex breakdown is to be interpreted essentially as a 
transition between such adjacent states, the existence of further subcritical 
conjugates being an irrelevant side-issue of the analysis. 

For long travelling waves with phase velocity c in the x-direction (see Appendix, 
Sd), the equation for the stream-function perturbation respective to the primary 
flow is 

and the boundary conditions are # ( O )  = #(a) = 0. Hence, for the mode with only 
one oscillation in (0 ,  a) ,  which gives the largest wave velocity Ic - 1 I relative to 
the flow, we have 

K n -- - If:- = kK,, 
1-c  a 

(5.10) 

where K, = n /a  is the value of K which makes the flow critical for a given a. 
The two values of c given by (5.10), i.e. 

C+ = (K/K,) f 1, C- = - (K/K,)+ 1, 

refer to propagation with and against the flow, respectively. The characteristic 
number defined by (3.4) is therefore simply 

N = K,/K. (5.11) 

This result exemplifies nicely the general property that supercritical flow states 
( N  > 1) are characterized, in comparison with subcritical ones, by smaller swirl 
velocities. 
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Example 2 .  Combined forced and free vortex 

The primary flow has uniform axial velocity and consists of two parts: (I) a 
core with solid-body rotation, and (11) a surrounding annular region of irrota- 
tional vortex motion. For this example it is convenient to use the radius r as 
independent variable, rather than y = +r2 as hitherto, and to take the core radius 
as length unit. Accordingly we assume 

W = 1 ,  $ = + r 2  in O g r < R ,  (5.12) 

and, defining the two regions of flow, 

(I) V = w r  in O < r < l ,  

(11) Y = w / r  in 1 < r < R .  
(5.13) 

FIGURE 7. Form of the conjugate solutions for a combined vortex 
with finite radial boundary. 

It is supposed that in a conjugate flow B the boundary between the two regions is 
displaced to r = < (figure 7).  At r = c we must have $ = @A = i, and, since the 
circulation, total head and pressure are to be continuous, the axial velocity 
r-l(d$/dr) must be continuous. 

Region I1 is conveniently considered first. From the assumed conditions it is 
readily verified that I and H are constant over this region (in fact equal to +w2 
and H o + w 2 ,  respectively, where H ,  is the total head on the axis), as must be 
the case since the flow is irrotational. Thus equation (4.5) reduces to I , + ~ ~  = 0 ,  
which implies @w - r-"? = 0,  and the solution satisfying 

$(() = i and $(R) = $A(R) = iR2 

is 
(1 - cz) R2 + (R2 - 1) r2 

2(R2 - 6 2 )  
$ ( r )  = 3 (5.14) 
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which shows the (constant) axial velocity in I1 to be 

(5.15) 

For region I we obtain, proceeding just as in the previous example, 

HI($) = 2w2, I t ($ )  = 4w2$. (5.16) 

Hence equation (4.5) becomes 

$v - r-l$r + 4w2$ = 2w2r2. (5.17) 

The most general solution of (5.17) satisfying $(O) = 0 may be expressed in the 

(5.18) 
form 

where C is an arbitrary constant, and the corresponding form for the axial 

(5.19) 
velocity is 

[Note that (5.19) derives from (5.18) in consequence of the relation 

$ = lr2 - -( 2 B Cr/w)J1(2wr), 

w = 1 - CJ0(2wr). 

J&) + x-lJ1(z) = J,(X) 
between Bessel functions.] 

The boundary condition $(() = 4 gives 

c2 - (C,t-/o)J1(2w5) = 1, (5.20) 

and the condition W ( [ )  = W,, gives 

Elimination of C between (5.20) and (5.21) leads to 

(5.21) 

(5.22) 

which is an implicit equation for [. When 6 is found from (5.22), C is given by 
either of (5.20) or (5.21), and the conjugate flow is then determined completely. 

An important feature of the present example is that it  still provides a clearly 
determinate solution when the outer boundary is expanded to infinity. The nature 
of the conjugate $rg in this case is illustrated in figure 8, which shows in particular 
that W,, = 1, as is indicated by (5.15) and as is obviously to be expected on physical 
grounds. Letting R + 00 in (5.22), we get the condition J,(2w[) = 0. Hence, 
taking the first zero of the Bessel function (which clearly is the one that gives the 
‘adjacent’ conjugate state whose solution curve does not oscillate about the 

(5.23) 
curve A ) ,  we have 

For finite R, the left-hand side of (5.22) is negative, and so wtlies within the inter- 
val 1*20+ to 1.92- over which J0(2w5) is negative and Jl(2w[) is positive, approach- 
ing zero at  the upper limit. 

The condition for critical flow is next derived. Although this can be done as 
before by consideration of the equation for long standing waves (as was in fact 

w f l =  1-20+ for R = co. 
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done by Squire (1960) for this example), the outcome is already evident from our 
present results. Since a state approaching critical is characterized by the 
existence of a conjugate solution infinitesimally displaced from so that 
(- 1 is infinitesimal, i t  follows that the required limiting condition is obtained 
simply by putting [ = 1 in (5.22). Thus, the critical value of w is given by 

(5.23) 

FIGURE 8. Form of the conjugate solutions for a combined vortex 
which is unbounded in the radial direction. 

In  particular we have 
o, = 1.20+ for R = co, (5.25) 

so that (5.23) can be written 

( = w,/w for R = 00. (5.26) 

For long standing waves the stream-function perturbation in I is the same as 
the second term on the right-hand side of (5.18), but with C made infinitesimal; 
and clearly this oscillates more rapidly with increasing o. Hence we conclude 
that the primary flow is supercritical when w < w,, and subcritical when w > w,. 

For a supercritical primary flow, (5.22) and (5.24) show therefore that the 
rotational core is expanded (< > 1) in the subcritical conjugate flow; and it 
follows that the axial velocity is reduced near the centre, as illustrated in figures 7 
and 8. According to (5.19), stagnation on the axis occurs when C = 1; and it 
can be seen that this case arises when the primary flow is sufficiently far super- 
critical, say when 6 = &. For ,$ > & the conjugate state is characterized by a 
central region of reversed flow. 

By considerations precisely similar to those made in the previous example, 
the two propagation velocities of long travelling waves are found to be 

c+ = (w/wc)  + 1, c- = - ( W / % )  + 1. (5.27) 
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Hence the characteristic number defined by (3.4) is identified as 

N = O,/W = 6. (5.28) 

In  particular we have N = 1.20+/w for R = co. And as an obvious generalization 
of this result, when in an arbitrary system of units the axial velocity is W*, the 
angular velocity of the core a*, and the core radius r*, we have 

W* N = 1*20+- 
w*r* 

(5.29) 

for a flow of infinite radial extent. 
It is noteworthy that the present example allows a direct verification of the 

fundamental property of a conjugate flow, namely that it conserves the +- 
distributions of both circulation and total head given for the primary flow. In  
region I the assumed conditions give I(+) = 2 ~ 2 $ ~  and H($)  = H,+2w2@. 
But H = p/p + Q( W 2  + V 2 )  can be calculated directly as a function of r by sub- 
stituting (5.19) for W ,  using (A17) in the Appendix to find p ,  and putting 
V 2  = 21(+)/r2 with (5.18) substituted for +. After some straightforward reduc- 
tions, the result is identifiable with the given form of H($)  with (5.18) substituted 
for +. A corresponding check for region I1 is easily made since both H and I 
are constants (i.e. V = w / r  as in the primary flow). This convincing exercise is 
to be recommended if the general arguments of 5 4 still leave doubt as to the pos- 
sibility of distinct flows for which H ( @ )  and I(+) are mutually conserved. 

Another feature which is amendable to direct calculation in this example is 
the difference in flow-force between the two states A and B. The integral (4.4) for 
S may be evaluated explicitly both for the primary flow A ,  which is a very easy 
task, and also for the conjugate B when (5.18) is substituted for + and (5.19) for 
w = &I in region I. The calculation is straightforward though fairly lengthy, 
using standard results for various integrals involving Bessel functions, and it 
seems fair to omit the details here. The end-result is 

S, - 8, = 7fpwyg - p+ $64 +log E ) ,  (5.30) 

which, rather surprisingly, does not involve R explicitly. The right-hand side of 
(5.30) is positive for 6 > 1; and in the light of our findings above, this result 
confirms the general theorem that the subcritical member of a conjugate flow 
pair has the greater flow-force. 

Putting = 1 + 6 and expanding the terms binomially, we get from (5.30) 

S,-S, = npo2(963++65-+66+ ...), (5.31) 

which accords with the general principle that the increase in flow-force associated 
with a supercritical-subcritical jump is of third order in the displacement pro- 
duced (cf. the corresponding result (2.2) for open-channel flows). 

6.  Conclusion 
The theory has provided a general interpretation of the essential factors in 

the vortex breakdown phenomenon, having demonstrated the relevant properties 
of swirling flows collectively in qualitative fashion rather than having analysed 
any particular flow model in detail-an alternative approach which would 
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anyway present great difficulties if a reasonably accurate model for some actual 
flow were considered. Our explanation of dissipative breakdowns by reference 
to the energy-conserving conjugate flows is admittedly somewhat oblique; 
but it is logical, as the analogous explanation for hydraulic jumps clearly showed, 
and it has the great merit of dealing comprehensively with the widely various 
physical possibilities for the primary flow. To deal directly with the case of a 
dissipative vortex breakdown (i.e. to formulate a counterpart to Rayleigh’s 
theory of the dissipative hydraulic jump), it  would be necessary to introduce 
some additional hypothesis for the way in which the total-head loss due to turbu- 
lence is distributed over the stream-surfaces, and also a hypothesis regarding 
the diffusion of angular momentum by turbulent mixing. In  consequence of 
these hypothetical factors, the comprehensiveness and precision of the present 
method of explanation would certainly be lost. 

As regards practical applications, an important aspect of the theory is its 
status in relation to swirling flows whose structure varies continuously in the 
axial direction-e.g. leading-edge vortices which are well known to be susceptible 
to breakdown. Here the position is much the same as it is with the sample theory 
of normal shock waves, or the corresponding theory of hydraulic jumps; that is, 
after finding the properties of a ‘discontinuity’ between the two states of flow 
each with infinite length, one may usefully match the theory to local conditions 
in a varying flow, provided the scale of the variation is reasonably large in 
comparison with the length scale of the discontinuity. 

Mr N. C. Lambourne has drawn my attention to several features which he 
observed in experiments at the National Physical Laboratory on breakdowns 
of leading-edge vortices, and which are not in direct accord with the present 
theory. The flow immediately following a breakdown generally appeared to be 
unsteady and not axisymmetric, in both respects differing from the case observed 
by Harvey (1962) in a ‘vortex tube’. The outstanding observation was that the 
core of the original flow, marked with a smoke trace, was deformed into a spiral 
following the breakdown. It is felt that these features are in fact not inconsistent 
with present ideas, since they are probably accountable to lateral fluctuations 
superposed on a steady axisymmetric configuration. Thus, although the essential 
mechanism of vortex breakdown is explainable in terms of an axisymmetric 
model, there may be in practice considerable disturbances from this basic 
situation. 

Appendix. Basic theory of axisymmetric swirling flows 
(a )  The equation for the stream-function 

We take cylindrical co-ordinates ( r ,  8, x )  with x along the axis of symmetry. In  
terms of orthogonal components respective to the co-ordinate directions, the 
velocityvector is denoted by q = (u, v, w) and the vorticityvector by w = (c,  q,C). 
The flow being steady, all velocity and vorticity components are functions of 
r and x only. The equation of continuity is therefore 
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which shows there to be a stream-function $(r ,  x) such that 

u = ---I $z, w = r-'$,. (A31 

Hence the resultant q* of the velocity components u and w in a meridional plane 
is directed along the axisymmetric 'stream-surfaces' $(r, x) = const., and the 
fluid particle paths are lines, generally spirals, on these surfaces. The magnitude 
of q, is q* = -r-'(ag/an), 

where n denotes the normal to the stream-surfaces. 
Choosing to approach the dynamical problem in a somewhat indirect way that 

has the advantage of providing insight into the geometrical aspects, we take as 
three basic precepts the vector equation 

(A 3) 

q x w = V H  (A 4) 

in which H = p / p  + &q2 (Milne-Thomson 1950, §3.45), Kelvin's circulation 
theorem, and its corollary that in a steady flow a vortex line must lie along a 
stream-surface. First we note that, when applied to a circuit around a particular 
stream-surface $ = const., Kelvin's theorem shows rv to be a constant; thus, in 
general, 

where K is a function of $ alone. Accordingly, q may be considered to be the 
resultant of the perpendicular components v = K / r  and q* in a stream-surface 
(see figure A 1). 

The component of vorticity in the &direction is given by (Milne-Thomson, 

(A51 rv = K($),  

y = u.,-ui = ---I ($rr-r-'$r+ $zz)* (A 6) P. 60)  

In consequence of the third basic result noted above, the resultant o+ of and 6 
must be directed along a stream-surface; andits magnitude w* is readily deduced 
by considering an infinitesimal surface normal to it drawn between consecutive 
stream-surfaces and two meridional planes subtending an angle 68. The area of 
this surface is r68.6n, and the circulation round its boundary is - 68. (aK/an) an, 
which must equal w* times the area; thus 

OJ* = - r -yaK/an) = q*K'($). (A71 

The total vorticity o is the resultant-of the perpendicular components 7 and w* 
in a stream-surface (see figure A 1). 

Now, (A4) shows the gradient of H to be perpendicular to q and a, which 
implies that it is normal to the stream-surfaces and hence that H is expressible 
as a function of $ alone. We can rewrite (A4) in the form 

aHpn = qwsinp, (A81 

(A91 

where p is the angle between q and o as shown in figure R1; and by (A3) this 
gives 

where a is the other angle defined in figure A 1. But we have 

rH ' ($ )  = -(q/q+)wsinP = -wsinpseca, 

and I wsinp = qcosa-w*sina, 

t ana  = K($)/rq*. 
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Hence, using also (A6) and (A7), and finally introducing the notation I = $K2 
so that K($)  F($) may be written as I’($) ,  we obtain directly from (A9) 

@rr - r-’$r + $z.z r2H’($) -”($I, (A111 

which is the required equation for $(r, x). Alternative derivations proceeding 
rather more formally from the basic equations of motion have been given by 
Long (1953) and Squire (1956). 

W .  4. 

FIGURE A l .  Diagram of velocity and vorticity vectors in tt stream-surface. 

At this point it is convenient to introduce y = $r2, the independent variable 
used in the main text. Using the fact that a/ay E r-l(a/ar), we get from (A 11) 

$yy + ( % - V z z  = Hr($)  - (2YF1Ir(34. (A 12) 

( b )  Perturbed cylindrical vortices 

We consider a primary flow with u = 0,  v = V(y), U I  = W(y) and suppose a small 
steady disturbance to be superposed on it. The stream-function is accordingly 
expressed as 

where ‘P is the stream-function for the primary flow and €4 is the perturbation. 
Note that Y is separately a solution of (A 12). Using this fact after substituting 
(A13) into (A12) and approximating the right-hand side to the first order in E ,  

we obtain 

(-413) $ = V Y )  + &Y, 4, 

(A 14) lpvv + (2y)-1 gz. - ( H ” ( Y )  - (2y)-l I N ( Y ) )  lp = 0. 

In  order to express the coefficient of $ in (A 14) explicitly as a function of y, 
i t  is first observed that for the primary flow 

and 

Hence 

w = d Y / d y ,  v 
H = p / p  + 4 W 2  + $ I / y .  

But in a steady cylindrical flow the equation of radial equilibrium is 

40 
p ,  = pV2/r, or pv = &pI/y2.  (A17) 

Fluid Mech. 14 
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This shows that the first and fourth terms cancel on the right-hand side of 
(A IS), so that 

Again using the fact that dld’rp = W-l(d /dy)  to transform the second derivatives, 
it  is now a simple matter to complete the reduction of (A 14). The result is 

(A181 dH/d’rp = W, + &I,/y W.  

We can arbitrarily set 9 = 0 on the axis, and also Y(0) = 0. If the fluid is 
bounded by a cylindrical rigid surface a t  y = a, then clearly the total rate of flow 
is Q = 2719~=,. Assuming that Q is unchanged when the primary flow is perturbed, 
we therefore have 

as boundary conditions on $. 
(A20) $(O,x) = 0, $(a,x) = 0 

( c )  Wave resistance 
We proceed to investigate the change in flow-force caused by perturbing a cylin- 
drical flow in the manner assumed above-that is, under the conditions that 
Q and the distributions of H and I over the stream-surfaces are unchanged. 
The flow-force S is the integral over the cross-section of the quantity 

p+pu2 = p { H ( 1 1 . ) + & U 2 - - w 2 - - I ( ~ ) / y } ,  

and we denote its values before and after perturbation by 8, and A”,, respectively 
Substituting (A13) into the integrand for S2 and approximating to the second 
order in e, we obtain 

Since H’(Y) - I’(Y)/2y = W, (see equation (A 18)), the two first-order terms in 
the integrand reduce to the single y-derivative ( WJ),, and so their integral vanishes 
in consequence of the boundary conditions (A20). A substitution for the term 
in can be made from (A 14), and two terms then appearing in the integrand 
reduce to $($$y)w so that their integral also vanishes. Hence we are led to 

S2 - 8, = 27rp €2 - ($fizz - 11.;) dy. (A22) Ioa :Y 
Consider now a standing-wave disturbance with 

$ = $(y ) s in (m+~) .  

By (A 19), 4 must be a solution of 
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Substitution of (A23) into (A22) shows at once that the reduction in S due to 
wave formation is 

a $2 A S  = S, - S, = dy, 

which is always positive and is independent of x, as is to be expected. This is the 
quantity described as the wave resistance in the main text. 

Note that when $ has an exponential dependence on 2 the integral (A22) 
vanishes, which proves S to be unchanged by the disturbance. This property is 
obviously to be expected on physical grounds, since far in front of an axisym- 
metrical obstacle fixed in a cylindrical vortex the disturbance created will 
diminish exponentially with distance, yet in the absence of any external force 
acting in the axial direction the flow-force must be constant everywhere ahead 
of the obstacle. 

( d )  The group velocity of standing waves 

To establish this property of standing waves, we need to consider their relation 
to the class of travelling waves for which the stream-function perturbation has 
the form 

where c is phase velocity and t time. Since this wave motion will appear steady 
in a frame of reference in which the primary velocity components are V and W - c, 
therefore 4 must satisfy an equation of the form (A24) with W - c in place of W .  
The boundary conditions are $ ( O )  = $(a)  = 0 as before. 

Here we are particularly interested in values of c close to  zero, corresponding 
to which a2 must necessarily be close to a positive eigenvalue, say a& of the Sturm- 
Liouville system comprising the standing-wave equation (A 24) and the boundary 
conditions (see $3). It is assumed, of course, that the flow is subcritical so that a 
positive a$ does exist.? We shall also assume that W > 0 throughout the interval 
(0 ,  a) .  Our primary aim is to show that the variation of a2 with c imposed by the 
eigenvalue problem with c a free parameter is such that the group velocity defined 
as 

is generally positive (i.e. in the flow direction) for c + 0. 

This substitution in (A24) leads to 

d(ac)/da = c + 2a2(dc/da2) (A 27) 

Identifying the standing-wave solution by a zero suffix we write $o = Wfo. 

t Note incidentally that a t  least if I ,  > 0 there is always, for any assigned value of u2, 
an admissible value of c which is greater than the maximum of W .  This fact appears on 
consideration that the coefficient of 9 in the travelling-wave equation is continuously 
adjustable between - +az/y and + 00 by such a choice of c. In  contrast with the waves 
thus indicated, which propagate with the flow, the waves which mainly concern us here 
are, of course, ones propagating against the flow. (For a discussion of rather similar 
ideas relating to water waves, see Brooke Benjamin (1962, 3 5) . )  

40-2 
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Writing the corresponding travelling-wave solution as q5, = ( W - c) fi, we have 
that f l  satisfies an equation like (A28) but with modified coefficients F,, G, 
which are given by replacing W with W - c in the definitions (A 29). 

Suppose now that the phase velocity is made an infinitesimal &, which in the 
first place may be taken as positive. For the eigenvalue of the travelling-wave 
system we may write a2, = a; + Sa2, where Sa2 is the variation dependent on Sc. 
Since W > 0, we have that Fo > Fl throughout (0, a ) ;  and if da2/dc were either 
zero or negative we would necessarily have also that Go > Gl throughout (0, a) .  
But according to Picone’s generalization of Sturm’s fundamental comparison 
theorem (Ince 1926, Q 10.31), these two conditions imply that fl would oscillate 
more rapidly that fo in this interval; in other words, whereas zeros of fo lie a t  the 
end-points of the interval, corresponding zeros of f, would span an interval less 
than the original by an infinitesimal amount of the order of Sc. Yet f, cannot 
have successive zeros which are not finitely spaced (Ince, $10.2). Thus, since 
fi as well as fo has to vanish at  both end-points, the case under test is proved 
impossible. Hence da2/dc must be positive; and clearly one would arrive a t  the 
same conclusion taking Sc < 0. 

This establishes that the group velocity defined by (A27) is positive in the limit 
c + 0. The important physical significance of this result has been explained in 
the main text. 

A similar argument can readily be applied to certain cases of travelling waves 
with a2 different by a finite amount from an eigenvalue a; for standing waves, 
and serves in particular to verify another important property which has been 
assumed, namely that waves of extreme length (i.e. with a2 + 0) can propagate 
upstream under subcritical conditions. Consider the largest eigenvalue, say 
a%, possible for a standing wave-which may of course be the only one if the 
flow is just marginally subcritical (see $3). The corresponding solution f o  will 
oscillate exactly once over the interval (0, a) .  If we were to put a2 < a;4, in (A38) 
leaving W unchanged, we would certainly find a solution which oscillates within 
(0, a )  since, while the F coefficient is unchanged, the G coefficient is madeevery- 
where more negative than Go in the standing-wave equation, thus increasing the 
rate of oscillation of the solution (cf. Ince, Q 10.3). But the rate of oscillation can 
now be decreased t o  an arbitrary extent by replacing W 2  with ( W - c)2 > W2, 
both because the F coefficient is made larger and the G coefficient less negative. 
Hence there is always a choice of a negative value for c which will prolong the 
oscillation up to the extent of (0, a) .  There will in fact be more than one choice 
of c to satisfy the boundary conditions if the solution for a2 < a; and W un- 
changed oscillates more than once within (0, a ) ;  but clearly the largest of the 
critical values of - c  is that which prolongs the first oscillation up to (0, a) .  
It is thus demonstrated that waves with a2 < a% exist which can propagate 
upstream. In  particular, the largest propagation velocity - c is obtained for 
a2 + 0 and when the respective solutionf, makes just one oscillation over (0, a) .  
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